Logo del repository
  1. Home
 
Opzioni

Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed With the Fermi Gamma-ray Burst Monitor

S. Guiriec
•
M. S. Briggs
•
V. Connaugthon
altro
C. Wilson Hodge
2010
  • journal article

Periodico
THE ASTROPHYSICAL JOURNAL
Abstract
From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T-90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index similar to -1.5. The time-integrated E-peak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their E-peak values and their low-energy power-law indices (alpha) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the E-peak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the E-peak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.
DOI
10.1088/0004-637X/725/1/225
WOS
WOS:000284576700040
Archivio
http://hdl.handle.net/11368/2749163
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-78650155751
Diritti
metadata only access
Soggetti
  • gamma rays: burst

  • radiation mechanisms:...

Scopus© citazioni
77
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
76
Data di acquisizione
Mar 24, 2024
Visualizzazioni
7
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback