Logo del repository
  1. Home
 
Opzioni

APOGEE DR16: A multi-zone chemical evolution model for the Galactic disc based on MCMC methods

Spitoni E.
•
Verma K.
•
Silva Aguirre V.
altro
Calura F.
2021
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
Context. The analysis of the latest release of the Apache Point Observatory Galactic Evolution Experiment project (APOGEE DR16) data suggests the existence of a clear distinction between two sequences of disc stars at different Galactocentric distances in the [α/Fe] versus [Fe/H] abundance ratio space: the so-called high-α sequence, classically associated with an old population of stars in the thick disc with high average [α/Fe], and the low-α sequence, which mostly comprises relatively young stars in the thin disc with low average [α/Fe]. Aims. We aim to constrain a multi-zone two-infall chemical evolution model designed for regions at different Galactocentric distances using measured chemical abundances from the APOGEE DR16 sample. Methods. We performed a Bayesian analysis based on a Markov chain Monte Carlo method to fit our multi-zone two-infall chemical evolution model to the APOGEE DR16 data. Results. An inside-out formation of the Galaxy disc naturally emerges from the best fit of our two-infall chemical-evolution model to APOGEE-DR16: Inner Galactic regions are assembled on shorter timescales compared to the external ones. In the outer disc (with radii R > 6 kpc), the chemical dilution due to a late accretion event of gas with a primordial chemical composition is the main driver of the [Mg/Fe] versus [Fe/H] abundance pattern in the low-α sequence. In the inner disc, in the framework of the two-infall model, we confirm the presence of an enriched gas infall in the low-α phase as suggested by chemo-dynamical models. Our Bayesian analysis of the recent APOGEE DR16 data suggests a significant delay time, ranging from ∼3.0 to 4.7 Gyr, between the first and second gas infall events for all the analysed Galactocentric regions. The best fit model reproduces several observational constraints such as: (i) the present-day stellar and gas surface density profiles; (ii) the present-day abundance gradients; (iii) the star formation rate profile; and (iv) the solar abundance values. Conclusions. Our results propose a clear interpretation of the [Mg/Fe] versus [Fe/H] relations along the Galactic discs. The signatures of a delayed gas-rich merger which gives rise to a hiatus in the star formation history of the Galaxy are impressed in the [Mg/Fe] versus [Fe/H] relation, determining how the low-α stars are distributed in the abundance space at different Galactocentric distances, which is in agreement with the finding of recent chemo-dynamical simulations.
DOI
10.1051/0004-6361/202039864
WOS
WOS:000629027800001
Archivio
http://hdl.handle.net/11368/2993475
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85102336116
Diritti
open access
license:digital rights management non definito
FVG url
https://arts.units.it/bitstream/11368/2993475/1/aa39864-20.pdf
Soggetti
  • Galaxy: abundance

  • Galaxy: evolution

  • ISM: general

  • Methods: statistical

Web of Science© citazioni
44
Data di acquisizione
Mar 20, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback