Logo del repository
  1. Home
 
Opzioni

On global solutions to a semilinear elliptic boundary problem in an unbounded domain

Egorov, Yuri V.
•
Kondratiev, Vladimir A.
2000
  • Controlled Vocabulary...

Abstract
We consider solutions to the elliptic linear equation \[ Lu:=\underset{i,j=1}{\overset{n}{\sum}}\frac{\partial}{\partial x_{i}}\left(a_{ij}\left(x\right)\frac{\partial u}{\partial x_{j}}\right)=0\qquad\qquad\left(1\right) \] of second order in an unbounded domain \[ \left\{ x=\left(x',x_{n}\right)\::\:\mid x'\mid<Ax_{n}^{\sigma}+B,0<x_{n}<\infty\right\} ,0\leq\sigma\leq1, \] in $\mathbf{R}^{n}$. We study the asymptotic behiaviour as $x_{n}\rightarrow\infty$ of the solutions of $\left(1\right)$ satisfying the nonlinear boundary condition \[ \frac{\partial u}{\partial N}-b\left(x\right)\mid u\left(x\right)\mid^{p-1}u\left(x\right)=0\qquad\qquad\left(2\right) \] on the lateral surface \[ S=\left\{ x\epsilon\partial Q,\;0<x_{n}<\infty\right\} , \] where p>0, b(x)$\geq b_{0}$ >0. We show that a global solution of the problem can exist not for all values of parameters p, $\sigma$ and indicate these values. The boundary problem in the cylinder was studied by us in $\left[1\right]$,$\left[2\right]$. The obtained results generalize some results of B. Hu in $\left[4\right]$.
Archivio
http://hdl.handle.net/10077/4270
Diritti
open access
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback