Logo del repository
  1. Home
 
Opzioni

Symplectic mapping class groups of K3 surfaces and Seiberg–Witten invariants

Smirnov, Gleb
2022
  • journal article

Periodico
GEOMETRIC AND FUNCTIONAL ANALYSIS
Abstract
The purpose of this note is to prove that the symplectic mapping class groups of many K3 surfaces are infinitely generated. Our proof makes no use of any Floer-theoretic machinery but instead follows the approach of Kronheimer and uses invariants derived from the Seiberg-Witten equations.
DOI
10.1007/s00039-022-00600-z
WOS
WOS:000777328200001
Archivio
https://hdl.handle.net/20.500.11767/142173
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85127445816
https://arxiv.org/abs/2102.10811
https://ricerca.unityfvg.it/handle/20.500.11767/142173
Diritti
open access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback