Logo del repository
  1. Home
 
Opzioni

Electrochromic properties of multicolored novel polymer synthesized via combination of benzotriazole and N-functionalized 2,5-di(2-thienyl)-1H-pyrrole units

Rende, Eda
•
Kilic, Cihan E.
•
Udum, Yasemin Arslan
altro
Toppare, Levent
2014
  • journal article

Periodico
ELECTROCHIMICA ACTA
Abstract
Synthesis of new conducting polymers is desired since their electrochemical and optical properties enable them to be used as active layers in many device applications. Benzotriazole and N-functionalized 2,5-di(2-thienyl)-1H-pyrrole (SNS Series) containing polymers showed very promising results as electrochromic materials. In order to observe the effect of the combination of these two units, three new monomers; 2-(6-(2,5-bis(5-methylthiophen-2-yl)-1H-pyrrol-1-yl)hexyl)-4,7-di(thiophen-2-yl)-2H benzo[d][1,2,3]triazole (M1), 2-(6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexyl)-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (M2) and 2-(6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexyl)-4,7-bis(5-methylthiophen-2-y1)-2H-benzo[d][1,2,3]triazole (M3) were synthesized. To better characterize the electronic and spectroscopic properties of the monomers, density functional theory (DFT) and its time-dependent generalization (TD-DFT) were used to calculate their vertical ionization potentials, vertical electron affinity and to simulate and interpret their infrared and UV-vis spectra. The monomers were electrochemically polymerized and the resultant polymers were characterized with cyclic voltammetry and UV-vis-NIR spectroscopy techniques. An electrochromic device was constructed with electrochemical polymer of M2. The device switched between red and blue colors and showed exceptional optical memory.
DOI
10.1016/j.electacta.2014.06.153
WOS
WOS:000341464000057
Archivio
http://hdl.handle.net/11368/2870460
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84904962163
http://www.journals.elsevier.com/electrochimica-acta/
Diritti
metadata only access
Soggetti
  • Conducting Polymer

  • DFT

  • Electrochemical Polym...

  • Electrochromism

  • SNS Derivative

  • Electrochemistry

  • Chemical Engineering ...

Scopus© citazioni
17
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
20
Data di acquisizione
Mar 19, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback