Logo del repository
  1. Home
 
Opzioni

Transcranial magnetic stimulation improves rotation sensitivity for actively viewed planar surfaces

Battelli L
•
Mancuso G
•
FANTONI, CARLO
•
Domini F.
2010
  • conference object

Periodico
JOURNAL OF VISION
Abstract
In previous experiments we measured observers' performance in a rotation-detection task during active vision of structure from motion (SfM) displays. Observers performed a lateral head shift while viewing either monocularly or binocularly the same optic flows consistent with either static or rotating random-dot planar surfaces. An Optotrack Certus system was used to update in real-time the optic flows as a function of observer's head position and orientation. Results showed that the addition of a null disparity field increased the likelihood of perceiving surface rotation causing reduced rotation sensitivity for the binocular relative to the monocular viewing condition. A possible hypothesis for this phenomenon is that the introduction of a null disparity field creates an inconsistency among the depth cues forcing the visual system to interpret the optic flow in a way consistent with disparity (rotating surface far from the point of view) rather than vergence information (static surface located at the level of the screen). In order to test this hypothesis we used low-frequency rTMS over the early visual cortex. Neurophysiological inactivation studies (Ponce et al., 2008) have found that visual areas V2/V3 are selective for the recovery of depth from binocular-disparity information. Two groups of subjects performed the same rotation detection task before and after rTMS or Sham-TMS delivered offline (10min, 1Hz) over V2/V3 targeting binocular disparity-sensitive neurons. Consistent with our hypothesis rTMS induced an improvement in the rotation sensitivity that was selective for binocular condition, while monocular performance remained intact. We conclude that low-frequency rTMS over V2/V3 inhibits binocular disparity-sensitive neurons allowing the visual system to interpret a binocularly viewed optic flow as consistent with retinal motion information and vergence regardless of disparity information.
DOI
10.1167/10.7.47
Archivio
http://hdl.handle.net/11368/2616858
Diritti
metadata only access
Soggetti
  • TMS

  • 3D shape

  • Active vision

  • Multisensory Integrat...

Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback