Logo del repository
  1. Home
 
Opzioni

Intrinsic Dimension of Path Integrals: Data-Mining Quantum Criticality and Emergent Simplicity

Mendes-Santos, T.
•
Angelone, A.
•
Rodriguez Garcia, A.
altro
Dalmonte, M.
2021
  • journal article

Periodico
PRX QUANTUM
Abstract
Quantum many-body systems are characterized by patterns of correlations defining highly nontrivial manifolds when interpreted as data structures. Physical properties of phases and phase transitions are typically retrieved via correlation functions, that are related to observable response functions. Recent experiments have demonstrated capabilities to fully characterize quantum many-body systems via wave-function snapshots, opening new possibilities to analyze quantum phenomena. Here, we introduce a method to data mine the correlation structure of quantum partition functions via their path integral (or equivalently, stochastic series expansion) manifold. We characterize path-integral manifolds generated via state-of-the-art quantum Monte Carlo methods utilizing the intrinsic dimension (ID) and the variance of distances between nearest-neighbor (NN) configurations: the former is related to data-set complexity, while the latter is able to diagnose connectivity features of points in configuration space. We show how these properties feature universal patterns in the vicinity of quantum criticality, that reveal how data structures simplify systematically at quantum phase transitions. This is further reflected by the fact that both ID and variance of NN distances exhibit universal scaling behavior in the vicinity of second-order and Berezinskii-Kosterlitz-Thouless critical points. Finally, we show how non-Abelian symmetries dramatically influence quantum data sets, due to the nature of (noncommuting) conserved charges in the quantum case. Complementary to neural-network representations, our approach represents a first elementary step towards a systematic characterization of path-integral manifolds before any dimensional reduction is taken, that is informative about universal behavior and complexity, and can find immediate application to both experiments and Monte Carlo simulations.
DOI
10.1103/PRXQuantum.2.030332
WOS
WOS:000689746500001
Archivio
http://hdl.handle.net/20.500.11767/125969
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85115854470
https://arxiv.org/abs/2103.02640
Diritti
open access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback