Logo del repository
  1. Home
 
Opzioni

Long lived transients in gene regulation

Petrov T
•
Igler C
•
Sezgin A
altro
Guet CC
2021
  • journal article

Periodico
THEORETICAL COMPUTER SCIENCE
Abstract
Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof.
DOI
10.1016/j.tcs.2021.05.023
WOS
WOS:000710180500002
Archivio
https://hdl.handle.net/11368/3070559
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85109039859
https://www.sciencedirect.com/science/article/pii/S0304397521003121
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3070559
Soggetti
  • Computer circuit

  • DNA

  • Dynamical system

  • Feedback

  • Modeling language

  • Stochastic model

  • Toy

  • Transcription

  • Transient analysis

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback