Logo del repository
  1. Home
 
Opzioni

Pivotal seeding for K-means based on clustering ensembles

Leonardo Egidi
•
Roberta Pappadà
•
Francesco Pauli
•
Nicola Torelli
2019
  • conference object

Abstract
Despite its large use, one major limitation of K-means algorithm is the impact of the initial seeding on the final partition. We propose a modified version, using the information contained in a co-association matrix obtained from clustering ensembles; such matrix is given as input for a set of pivotal methods, implemented in the pivmet R package, used to perform a pivot-based initialization step. Preliminary results concerning the comparison with the classical approach and other clustering methods are discussed.
Archivio
http://hdl.handle.net/11368/2946994
https://it.pearson.com/content/dam/region-core/italy/pearson-italy/pdf/Dirigenti e istituzioni/ISTITUZIONI-HE-PDF-sis2019_V4.pdf
Diritti
closed access
license:digital rights management non definito
FVG url
https://arts.units.it/request-item?handle=11368/2946994
Soggetti
  • Clustering

  • pivotal method

  • seeding

Visualizzazioni
9
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback