Logo del repository
  1. Home
 
Opzioni

Solutions of minimal period for Hamiltonian systems with quadratic growth at the origin and superquadratic at infinity

Girardi, Mario
•
Matzeu, Michele
1986
  • Controlled Vocabulary...

Abstract
Vengono presentate alcune tecniche basate sulla teoria dell'indice di Morse e su un'opportuna versione del principio di dualità di Clarke ed Ekeland per dare alcuni risultati sull'esistenza di soluzioni di periodo minimo prefissato di sistemi Hamiltoniani del tipo \[ \dot{x}=\omega_{i}y_{i}+\frac{\partial}{\partial x_{i}}\hat{H}(x,y),-\dot{y_{i}}=\omega_{i}x_{i}+\frac{\partial}{\partial y_{i}}\hat{H}(x,y)(i=1,...,N), \] \[ \textrm{dove}\:0<\omega_{1}\leq...\leq\omega_{N}\:\textrm{e}\hat{H}\epsilon C^{2}(\mathbf{R^{\textrm{2N}}\textrm{;}R\textrm{)}} \] è strettamente convessa ed ha un comportamento superquadratico. Some techniques based on the Morse index theory and a suitable version of the duality principle by Clarke and Ekeland are presented here in order to give some results about the existence of periodic solutions with prescribed minimal period to Hamiltonian systems of the type \[ \dot{x}=\omega_{i}y_{i}+\frac{\partial}{\partial x_{i}}\hat{H}(x,y),-\dot{y_{i}}=\omega_{i}x_{i}+\frac{\partial}{\partial y_{i}}\hat{H}(x,y)(i=1,...,N), \] \[ \textrm{where}\:0<\omega_{1}\leq...\leq\omega_{N}\:\textrm{and}\hat{H}\epsilon C^{2}(\mathbf{R^{\textrm{2N}}\textrm{;}R\textrm{)}} \] is strictly convex and has a superquadratic behaviour.
Archivio
http://hdl.handle.net/10077/4970
Diritti
open access
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback