Logo del repository
  1. Home
 
Opzioni

Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model

Bertola, M.
•
Gekhtman, M.
•
Szmigielski, J.
2013
  • journal article

Periodico
JOURNAL OF MATHEMATICAL PHYSICS
Abstract
We apply the nonlinear steepest descent method to a class of 3x3 Riemann-Hilbert problems introduced in connection with the Cauchy two-matrix random model. The general case of two equilibrium measures supported on an arbitrary number of intervals is considered. In this case, we solve the Riemann-Hilbert problem for the outer parametrix in terms of sections of a spinorial line bundle on a three-sheeted Riemann surface of arbitrary genus and establish strong asymptotic results for the Cauchy biorthogonal polynomials.
DOI
10.1063/1.4802455
WOS
WOS:000318551900047
Archivio
http://hdl.handle.net/20.500.11767/12210
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84877664788
https://arxiv.org/abs/1206.3199
https://aip.scitation.org/doi/10.1063/1.4802455
Diritti
open access
Soggetti
  • Operator theory

  • Gradient method

  • Differential topology...

  • Complex analysi

  • Real analysi

  • Complex function

  • Potential theory

  • Riemann surface

  • Field theory

  • Recurrence relations

  • Settore MAT/07 - Fisi...

Scopus© citazioni
7
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
12
Data di acquisizione
Mar 13, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback