Logo del repository
  1. Home
 
Opzioni

Clinical and neurophysiological effects of botulinum neurotoxin type a in chronic migraine

Valente M.
•
Lettieri C.
•
Russo V.
altro
Gigli G. L.
2021
  • journal article

Periodico
TOXINS
Abstract
Chronic pain syndromes present a subversion of both functional and structural nociceptive networks. We used transcranial magnetic stimulation (TMS) to evaluate changes in cortical excitability and plasticity in patients with chronic migraine (CM) treated with botulinum neurotoxin type A (BoNT/A). We enrolled 11 patients with episodic migraine (EM) and 11 affected by CM. Baseline characteristics for both groups were recorded using single-and paired-pulse TMS protocols. The same TMS protocol was repeated in CM patients after four cycles of BoNT/A completed in one year. At baseline, compared with EM patients, patients with CM had a lower threshold in both hemispheres (right hemisphere: 46% ± 7.8 vs. 52% ± 4.28, p = 0.03; left hemisphere: 52% ± 4.28 vs. 53.54% ± 6.58, p = 0.02). In EM, paired-pulse stimulation elicited a physiologically shaped response, whereas in CM, physiological intracortical inhibition (ICI) between 1 and 3 ms intervals was absent at baseline. On the contrary, increasing intracortical facilitation (ICF) was observed for all interstimulus intervals (ISIs). In CM, cortical excitability was partially reduced after BoNT/A treatment, along with a significant decrease observed in MIDAS score (from 20.7 to 9.8; p = 0.008). The lower motor threshold in CM reflects a higher cortical hyperexcitability. The lack of physiological ICI in CM could indicate sensitisation of the trigeminovascular system. Although reduced, this type of response is still observable after treatment, despite a marked clinical improvement. Our study suggests a long-term alteration of cortical plasticity due to chronic pain.
DOI
10.3390/toxins13060392
WOS
WOS:000666438000001
Archivio
http://hdl.handle.net/11390/1208006
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85107451898
Diritti
open access
Soggetti
  • Chronic headache

  • Chronic pain

  • Migraine

  • Transcranial magnetic...

Web of Science© citazioni
4
Data di acquisizione
Mar 20, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback