Logo del repository
  1. Home
 
Opzioni

Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation

OBERSNEL, Franco
•
OMARI, PIERPAOLO
2013
  • journal article

Periodico
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Abstract
We discuss existence and regularity of bounded variation solutions of the Dirichlet problem for the one-dimensional capillarity-type equation \begin{equation*} \Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u) \quad \hbox{ in } {]-r,r[}, \qquad u(-r)=a, \, u(r) = b. \end{equation*} We prove interior regularity of solutions and we obtain a precise description of their boundary behaviour. This is achieved by a direct and elementary approach that exploits the properties of the zero set of the right-hand side $f$ of the equation.
DOI
10.3934/dcds.2013.33.305
WOS
WOS:000309286500021
Archivio
http://hdl.handle.net/11368/2395859
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84866978279
http://aimsciences.org/journals/pdfs.jsp?paperID=7616&mode=full
Diritti
metadata only access
Soggetti
  • quasilinear ordinary...

  • , Dirichlet problem, ...

Scopus© citazioni
11
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
13
Data di acquisizione
Mar 23, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback