Logo del repository
  1. Home
 
Opzioni

Enhanced Oxygen Buffering by Substitutional and Interstitial Ni Point Defects in Ceria: A First-Principles DFT plus U Study

Wang Xinquan
•
Shen Meiqing
•
Wang Jun
•
Fabris, Stefano
2010
  • journal article

Periodico
JOURNAL OF PHYSICAL CHEMISTRY. C
Abstract
The defect chemistry and electronic structure of NiO/CeO(2) solid solutions are studied by means of DFT+U calculations in the limit of low Ni doping. We consider four representative solid solutions in which the Ni atoms are present as substitutional and interstitial point defects in bulk crystalline CeO(2), both in its stoichiometric form and in the presence of O vacancies. In all cases, Ni-doping significantly enhances the O buffering effect of ceria, controlled by O vacancy formation, but the actual microscopic mechanisms are different depending on the specific type and charge state of the point defects. The oxidation state of the Ni dopant is shown to univocally characterize the type of defect, whether interstitial (Ni(+)) or substitutional (Ni(2+)). Interstitial NO defects result from a charge redistribution between the Ni and Ce cations that leads to the formation of characteristic Ni(+)-Ce(3+) defect complexes. O release via vacancy formation in these interstitial solid solutions proceeds similarly as in pure CeO(2), i.e., is mediated by electron localization processes reducing two Ce(4+) ions to Ce(3+). Quite differently, substitutional Ni(2+) point defects yield unsaturated O 2p valence bands and the appearance of unoccupied gap states spatially localized on the O atoms neighboring the Ni defect. Consequently, O vacancy formation in substitutional solid solutions does not lead to reduction of Ce ions but to quenching of these gap states. Ab initio thermodynamics predict the substitutional solid solutions to be more stable than the interstitial ones by more than 2.4 eV over a wide range of pressures and temperatures. We demonstrate that these conclusions are robust with respect to the specific choice of the Hubbard U parameters accounting for the on-site electron Coulomb interaction on the Ni and Ce sites.
DOI
10.1021/jp101100f
WOS
WOS:000278301200020
Archivio
http://hdl.handle.net/20.500.11767/32339
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77953201367
Diritti
metadata only access
Scopus© citazioni
45
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
49
Data di acquisizione
Mar 27, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback