Logo del repository
  1. Home
 
Opzioni

Multilingual Semantic Distance: Automatic Verbal Creativity Assessment in Many Languages

John D. Patterson
•
Hannah M. Merseal
•
Dan R. Johnson
altro
Roger E. Beaty
2023
  • journal article

Periodico
PSYCHOLOGY OF AESTHETICS, CREATIVITY, AND THE ARTS
Abstract
Creativity research commonly involves recruiting human raters to judge the originality of responses to divergent thinking tasks, such as the alternate uses task (AUT). These manual scoring practices have benefited the field, but they also have limitations, including labor-intensiveness and subjectivity, which can adversely impact the reliability and validity of assessments. To address these challenges, researchers are increasingly employing automatic scoring approaches, such as distributional models of semantic distance. However, semantic distance has primarily been studied in English-speaking samples, with very little research in the many other languages of the world. In a multilab study (N = 6,522 participants), we aimed to validate semantic distance on the AUT in 12 languages: Arabic, Chinese, Dutch, English, Farsi, French, German, Hebrew, Italian, Polish, Russian, and Spanish. We gathered AUT responses and human creativity ratings (N = 107,672 responses), as well as criterion measures for validation (e.g., creative achievement). We compared two deep learning-based semantic models—multilingual bidirectional encoder representations from transformers and cross-lingual language model RoBERTa—to compute semantic distance and validate this automated metric with human ratings and criterion measures. We found that the top-performing model for each language correlated positively with human creativity ratings, with correlations ranging from medium to large across languages. Regarding criterion validity, semantic distance showed small-to-moderate effect sizes (comparable to human ratings) for openness, creative behavior/achievement, and creative self-concept. We provide open access to our multilingual dataset for future algorithmic development, along with Python code to compute semantic distance in 12 languages.
DOI
10.1037/aca0000618
WOS
WOS:001068876400009
Archivio
https://hdl.handle.net/11368/3058218
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85177178542
https://psycnet.apa.org/doiLanding?doi=10.1037/aca0000618
Diritti
open access
license:copyright editore
license:digital rights management non definito
license uri:iris.pri02
license uri:iris.pri00
FVG url
https://arts.units.it/request-item?handle=11368/3058218
Soggetti
  • creativity assessment...

  • cross-linguistic anal...

  • distributional semant...

  • natural language proc...

  • semantic distance

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback