Logo del repository
  1. Home
 
Opzioni

What controls the isotopic composition of Greenland surface snow?

H. C. Steen Larsen
•
V. Masson Delmotte
•
M. Hirabayashi
altro
A. E. Sveinbjörnsdottír
2014
  • journal article

Periodico
CLIMATE OF THE PAST
Abstract
Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of near surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe strong correlation between surface vapor δ18O and air temperature (0.85±0.11‰C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes are not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% mass turnover of surface snow per day driven by snow recrystallization processes under NEEM summer surface snow temperature gradients. Our findings have implications for ice core data interpretation and model-data comparisons, and call for further process studies.
DOI
10.5194/cp-10-377-2014
Archivio
http://hdl.handle.net/11368/2798323
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84896853748
Diritti
metadata only access
Soggetti
  • water stable isotope

  • water vapor

  • Greenland

Scopus© citazioni
97
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
109
Data di acquisizione
Mar 28, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback