Opzioni
Abstract
The general problem addressed in this thesis is that of understanding the
origin of the primordial inhomogeneities of the energy density which gave
rise to the observed large scale structure of the universe. My purpose has
been to work out the link between the perturbations arising in different
inflationary models and the initial conditions assumed in phenomenological
models for structure formation. In particular, I have considered inflationary
models when more than one scalar field is present during inflation, and I have
studied the possibility that the resulting energy density fluctuations are of
the isocurvature type or have a non-Gaussian distribution.
In the first part of the thesis some topics relevant for the origin of the
structures in the inflationary cosmology are reviewed. In chapter 1, the main
tools for the description of the density inhomogeneities are discussed. In
particular, the different possible primordial initial conditions on the perturbations
are characterized and the possibility that they arise in the frame
of inflation is analysed. We also discuss the most usual scenarios for the
formation of structure and their viability. Finally, some relevant issues for
the evolution of the density perturbations are presented. In chapter 2, the
inflationary scenario is reviewed, the motivations for it are presented and
the main models proposed in which it can be realised are introduced. We
discuss how density fluctuations are originated from quantum fluctuations
of the scalar field which drives inflation, and how they evolve from the time
when the associated wavelengths leave the Hubble radius during inflation up
to when they cross it again in the radiation or matter dominated era. In
the last section, we present the stochastic approach to inflation and discuss
its advantages and applications. In the last two subsections, a part of some
original work in progress in collaboration with M. Mijic about the structure
of space-time arising in stochastic inflation is reported.
The second part of the thesis contains the bulk of my original contribution
which essentially deals with perturbations originated in inflationary models
when more than one scalar field is present. In chapter 3 the possibility
that the initial conditions required in phenomenological isocurvature models
are realised in the different two field models proposed in the literature is
analysed. This involves, firstly, the determination of the perturbations in
the classical variables, such as the energy density and velocity associated to
each field, originated by the quantum fluctuations of both fields. Further,
it requires the study of the subsequent evolution of the fluctuations and the comparison with the initial perturbations needed in the phenomenological
models during the radiation dominated era, when these initial conditions are
generally imposed. We find that the model in which the additional scalar field
decays into thermal radiation after baryogenesis, giving rise to fluctuations
in the initially smooth entropy per baryon ratio, does not provide these
isocurvature initial conditions as was expected. It turns out that in the case
in which the second weakly interacting scalar field remains as a dark matter
component up to the present epoch, in the case in which axions are considered
and in the spontaneous baryogenesis model the isocurvature initial conditions
can be originated.
In chapter 4 the two-field models are analysed in the stochastic inflation
frame. This research has been developed in collaboration with S. Matarrese,
A. Ortolan and F. Lucchin. The stochastic approach is first extended to deal
with more than one scalar field. The Langevin and Fokker-Planck equations
for the joint probability are derived for a general two-field model. We then
analyse in detail the case of a massless non-dominating field in a power-law
inflation driven by an inflaton with an exponential potential. We study the
statistics of the distribution of the non-dominating field. We obtain that in
spite of being a free field, it shows highly non- gaussian behaviour on scales
much larger than the present horizon; on observable ;cales it gives rise to
isocurvature perturbations which are both essentially Gaussian and have a
scale invariant spectrum.
Diritti
open access