Logo del repository
  1. Home
 
Opzioni

Cross-correlation of Dark Energy Survey Year 3 lensing data with ACT and Planck thermal Sunyaev-Zel'dovich effect observations. I. Measurements, systematics tests, and feedback model constraints

A Gatti, M.
•
Pandey, S.
•
Baxter, E.
altro
Xu, Z.
2022
  • journal article

Periodico
PHYSICAL REVIEW D
Abstract
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zel'dovich (TSZ) maps from Planck and the Atacama Cosmology Telescope and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey. This correlation is sensitive to the thermal energy in baryons over a wide redshift range and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of 21σ, the highest significance to date. We examine the TSZ maps for potential contaminants, including cosmic infrared background and radio sources, finding that cosmic infrared background has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the TSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalizes over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalize over ωm and σ8 using Planck or DES priors. We find that the data prefer the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong active galactic nuclei feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions.
DOI
10.1103/PhysRevD.105.123525
WOS
WOS:000822807200008
Archivio
https://hdl.handle.net/11368/3037745
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85134638625
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.123525
Diritti
open access
license:copyright editore
license uri:iris.pri02
FVG url
https://arts.units.it/bitstream/11368/3037745/3/PhysRevD.105.123525.pdf
Soggetti
  • Astrophysic

  • Cosmology and Nongala...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback