Logo del repository
  1. Home
 
Opzioni

Phase transformation induces plasticity with negligible damage in ceria-stabilized zirconia-based ceramics

Liens, Aléthéa
•
Reveron, Helen
•
Douillard, Thierry
altro
Chevalier, Jérôme
2020
  • journal article

Periodico
ACTA MATERIALIA
Abstract
Ceramics and their composites are in general brittle materials because they are predominantly made up of ionic and covalent bonds that avoid dislocation motion at room temperature. However, a remarkable ductile behavior has been observed on newly developed 11 mol.% ceria-stabilized zirconia (11Ce-TZP) composite containing fine alumina (8vol.% Al2O3) and elongated strontium hexa-aluminate (8vol.% SrAl12O19) grains. The as-synthesized composite also has shown full resistance to Low Temperature Degradation (LTD), relatively high strength and exceptionally high Weibull modulus, allowing its use in a broader range of biomedical applications. In this study, to deepen the understanding of plastic deformation in Ce-TZP based composites that could soon be used for manufacturing dental implants, different mechanical tests were applied on the material, followed by complete microstructural characterization. Distinct from pure Ce-TZP material or other zirconia-based ceramics developed in the past, the material here studied can be permanently strained without affecting the Young modulus, indicating that the ductile response of tested samples cannot be associated to damage occurrence. This ductility is related to the stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation, analogue to Transformation-Induced Plasticity (TRIP) steels, where retained austenite is transformed to martensite. The aim of this study is to corroborate if the observed plasticity can be associated exclusively to the zirconia t-m phase transformation, or also to microcraking induced by the transformation. The t-m transformed-zones produced after bending and biaxial tests were examined by X-ray refraction and SEM/TEM coupled with Raman. The results revealed that the observed elastic-plastic behavior occurs without extensive microcracking, confirming a purely elastic-plastic behavior driven by the phase transformation (absence of damage).
DOI
10.1016/j.actamat.2019.10.046
WOS
WOS:000506465100023
Archivio
http://hdl.handle.net/11368/2952913
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85075192597
https://www.sciencedirect.com/science/article/pii/S1359645419307177
Diritti
open access
license:copyright editore
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/2952913
Soggetti
  • Zirconia

  • Ceramic composite

  • tetragonal-to-monocli...

Scopus© citazioni
15
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
36
Data di acquisizione
Mar 27, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback