Logo del repository
  1. Home
 
Opzioni

Attractor-like dynamics in belief updating in schizophrenia

Rick A Adams
•
Gary Napier
•
Jonathan P Roiser
altro
James Gilleen
2018
  • journal article

Periodico
THE JOURNAL OF NEUROSCIENCE
Abstract
Subjects with a diagnosis of schizophrenia (Scz) overweight unexpected evidence in probabilistic inference: such evidence becomes 'aberrantly salient'. A neurobiological explanation for this effect is that diminished synaptic gain (e.g. hypofunction of cortical N-methyl-D-aspartate receptors) in Scz destabilizes quasi-stable neuronal network states (or 'attractors'). This attractor instability account predicts that i) Scz would overweight unexpected evidence but underweight consistent evidence, ii) belief updating would be more vulnerable to stochastic fluctuations in neural activity, and iii) these effects would correlate.Hierarchical Bayesian belief updating models were tested in two independent datasets (n=80 and n=167, male and female) comprising human subjects with schizophrenia, and both clinical and non-clinical controls (some tested when unwell and on recovery) performing the 'probability estimates' version of the beads task (a probabilistic inference task). Models with a standard learning rate, or including a parameter increasing updating to 'disconfirmatory evidence', or a parameter encoding belief instability were formally compared.The 'belief instability' model (based on the principles of attractor dynamics) had most evidence in all groups in both datasets. Two of four parameters differed between Scz and non-clinical controls in each dataset: belief instability and response stochasticity. These parameters correlated in both datasets. Furthermore, the clinical controls showed similar parameter distributions to Scz when unwell, but were no different to controls once recovered.These findings are consistent with the hypothesis that attractor network instability contributes to belief updating abnormalities in Scz, and suggest that similar changes may exist during acute illness in other psychiatric conditions.SIGNIFICANCE STATEMENTSubjects with a diagnosis of schizophrenia (Scz) make large adjustments to their beliefs following unexpected evidence, but also smaller adjustments than controls following consistent evidence. This has previously been construed as a bias towards 'disconfirmatory' information, but a more mechanistic explanation may be that in Scz, neural firing patterns ('attractor states') are less stable and hence easily altered in response to both new evidence and stochastic neural firing. We model belief updating in Scz and controls in two independent datasets using a hierarchical Bayesian model, and show that all subjects are best fit by a model containing a belief instability parameter. Both this and a response stochasticity parameter are consistently altered in Scz, as the unstable attractor hypothesis predicts.
DOI
10.1523/JNEUROSCI.3163-17.2018
WOS
WOS:000448791600018
Archivio
http://hdl.handle.net/20.500.11767/83361
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85055845811
Diritti
open access
Soggetti
  • attractor model

  • Bayesian

  • beads task

  • disconfirmatory bia

  • psychosi

  • schizophrenia

  • Settore M-PSI/02 - Ps...

Web of Science© citazioni
40
Data di acquisizione
Mar 14, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback