For exponents p satisfying 0<|p−3|≪1 and only in the context of spatially even solutions we prove that the ground states of the nonlinear Schrödinger equation (NLS) with pure power nonlinearity of exponent p in the line are asymptotically stable. The proof is similar to a related result of Martel [45] for a cubic quintic NLS. Here we modify the second part of Martel's argument, replacing the second virial inequality for a transformed problem with a smoothing estimate on the initial problem, appropriately tamed by multiplying the initial variables and equations by a cutoff.