Logo del repository
  1. Home
 
Opzioni

Cardiac oxidative stress determination and myocardial morphology after a single ecstasy (MDMA) administration in a rat model

Cerretani D
•
Riezzo I
•
Fiaschi AI
altro
Fineschi V
2008
  • journal article

Periodico
INTERNATIONAL JOURNAL OF LEGAL MEDICINE
Abstract
Experimental and clinical data indicate that 3,4-methylenedioxy-N-methylamphetamine (MDMA) abuse can produce significant cardiovascular toxicity. A mechanism may be a direct toxic effect of redox active metabolites of MDMA. To evaluate the effect of a single MDMA dose on cellular antioxidant defence system and to investigate the morphology in male albino rats, total glutathione (GSH), oxidised glutathione (GSSG), ascorbic acid (AA), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and malondialdehyde (MDAL) were studied. The effects were evaluated at 3, 6, 16 and 24 h after MDMA administration. Antioxidant enzymes activity was significantly reduced: GPx (-24%) and SOD (-50%) after 3 h and GR (-19%) after 6 h from treatment. AA levels decrease (-37%) after 3 h and (-30%) after 6 h; MDAL level increased (+119%) after 3 h; GSH levels decreased after 3 (31.3%) and 6 h (37.9%) from MDMA treatment. GSSG content was not affected by ecstasy administration. Myocardial contraction band necrosis (CBN) was already visible in rats killed at 6 h. After 16 h, macrophagic monocytes around the necrotic myocardial cells were observed, and within 24 h, this infiltrate became more widespread with an early removal of the necrotic material. Calcium deposits were observed within ventricular cardiomyocytes with intact nuclei and sarcomeres. Single administration of MDMA can significantly alter the cellular antioxidant defence system and produce oxidative stress which may result in lipid peroxidation and disruption of Ca(2 +) homeostasis. The depression in Ca(2+) regulatory mechanism by reactive oxygen species ultimately results in intracellular Ca(2 +) overload, CBN and cell death
DOI
10.1007/s00414-008-0262-2
WOS
WOS:000259732400003
Archivio
http://hdl.handle.net/11368/2960092
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-53849126106
Diritti
metadata only access
Scopus© citazioni
39
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
44
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback