Logo del repository
  1. Home
 
Opzioni

Architectural Leakage Power Minimization of Scratchpad Memories by Application-Driven Subbanking

LOGHI, Mirko
•
GOLUBEVA O
•
MACII E
•
PONCINO M.
2010
  • journal article

Periodico
IEEE TRANSACTIONS ON COMPUTERS
Abstract
Partitioning a memory into multiple blocks that can be independently accessed is a widely used technique to reduce its dynamic power. For embedded systems, its benefits can be even pushed further by properly matching the partition to the memory access patterns. When leakage energy comes into play, however, idle memory blocks must be put into a proper low-leakage sleep state to actually save energy when not accessed. In this case, the matching becomes an instance of the power management problem, because moving to and from this sleep state requires additional energy. In this work, we propose an effective solution to the problem of the leakage-aware partitioning of a memory into disjoint subblocks; in particular, we target scratchpad memories, which are commonly used in some embedded systems as a replacement for caches. We show that, although the solution space is extremely large (for a N-block partition, all the combinations of N-1 address boundaries) and nonconvex, it is possible to prove a nontrivial property that considerably reduces the number of partition boundaries to be enumerated, therefore, making exhaustive exploration feasible. We are thus able to provide an optimal solution to the leakage-aware partitioning problem. Experiments on a different sets of embedded applications have shown that total energy savings larger than 60% on average can be obtained, with a marginal overhead in execution time, thanks to an effective implementation of the low-leakage sleep state.
DOI
10.1109/TC.2010.43
WOS
WOS:000279059000003
Archivio
http://hdl.handle.net/11390/880819
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77952933403
Diritti
closed access
Scopus© citazioni
30
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
24
Data di acquisizione
Mar 24, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback