Logo del repository
  1. Home
 
Opzioni

Atomic Force Microscopy-based essay for biomedical applications

BATTISTELLA, ALICE
  • doctoral thesis

Abstract
The investigation of cellular mechanical properties for the evaluation of the cell physiological state has emerged as a hot topic in the last decade. In this framework, different aspects of the mechanobiology are considered in three biomedical fields. First, the alteration of the mechanical phenotype, the cell structure and morphology of melanoma cells according to the levels of production of a factor involved in the cytoskeleton organization, are considered. Secondly, mechanotransduction, and more precisely the capability of cells to adapt their mechanics to the environmental condition was investigated on the effect of a heart failure on cardiac pericytes. In the last part, the mechanical properties of oocytes have been identified as a scoring system to evaluate the quality of oocytes to be selected for the practice of the in vitro fertilization. In particular, I investigated the evolution of the oocyte stiffness and viscosity during post-ovulatory ageing, one of the processes responsible for the decreased yields of in vitro fertilization. Here, two mechanical parameters were found, able to predict ageing status of the oocytes before any visual feature due to degradation. allowing to introduce a novel classification for pre-apoptotic and non-fertile oocytes.
The investigation of cellular mechanical properties for the evaluation of the cell physiological state has emerged as a hot topic in the last decade. In this framework, different aspects of the mechanobiology are considered in three biomedical fields. First, the alteration of the mechanical phenotype, the cell structure and morphology of melanoma cells according to the levels of production of a factor involved in the cytoskeleton organization, are considered. Secondly, mechanotransduction, and more precisely the capability of cells to adapt their mechanics to the environmental condition was investigated on the effect of a heart failure on cardiac pericytes. In the last part, the mechanical properties of oocytes have been identified as a scoring system to evaluate the quality of oocytes to be selected for the practice of the in vitro fertilization. In particular, I investigated the evolution of the oocyte stiffness and viscosity during post-ovulatory ageing, one of the processes responsible for the decreased yields of in vitro fertilization. Here, two mechanical parameters were found, able to predict ageing status of the oocytes before any visual feature due to degradation. allowing to introduce a novel classification for pre-apoptotic and non-fertile oocytes.
Archivio
http://hdl.handle.net/11368/2996075
Diritti
open access
FVG url
https://arts.units.it/bitstream/11368/2996075/2/Thesis Final_afterRevision.pdf
Soggetti
  • AFM

  • Force Spectroscopy

  • Oocyte

  • Cell mechanic

  • IVF

  • IVF

  • Settore FIS/03 - Fisi...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback