Logo del repository
  1. Home
 
Opzioni

Feedback stability limits for active isolation systems with reactive and inertial actuators

Elliott, S. J.
•
Serrand, M.
•
GARDONIO, Paolo
2001
  • journal article

Periodico
JOURNAL OF VIBRATION AND ACOUSTICS
Abstract
Some of the compromises inherent in using a passive system to isolate delicate equipment from base vibration can be avoided using fully active skyhook damping. Ideally, a secondary force, which is made proportional to the absolute equipment velocity by a feedback controller, acts only on the equipment and so the response of the system under control, between the secondary force input and the collocated velocity output, i.e., the plant response, is proportional to the driving point mobility of the mounted equipment. The frequency response of the plant is guaranteed to have a positive real part under these ideal conditions, and so the feedback system is unconditionally stable for any positive real feedback gain. In practice, the actuator generating the secondary force must either react off the base structure or an inertial mass. In both of these cases the plant response is no longer guaranteed to be positive real and so the control system may become unstable at high gains. Expressions for the overall plant responses are derived for both of these arrangements, in terms of the dynamic response of the individual parts of the isolation system. When using a soft mount, the stability of the reactive system is found to be surprisingly tolerant of the additional contributions to the plant response from the reactive force. In order for the inertial system to be stable with a high feedback gain, however, the natural frequency of the actuator must be well below the natural frequency of the equipment on the mounts. Experimentally measured plant responses are compared with those predicted from theory for both types of actuator and the performance of practically implemented feedback controllers is discussed.
DOI
10.1115/1.1350822
WOS
WOS:000168688800017
Archivio
http://hdl.handle.net/11390/675950
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-13344293745
http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1470320
Diritti
metadata only access
Scopus© citazioni
115
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
98
Data di acquisizione
Mar 28, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback