Logo del repository
  1. Home
 
Opzioni

Establishing the catalytic and regulatory mechanism of RNA-based machineries

Borisek J.
•
Aupic J.
•
Magistrato A.
2022
  • journal article

Periodico
WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE
Abstract
Ribonucleoprotein (RNP)-machineries are comprised of intricate networks of long noncoding RNAs and proteins that allow them to actively participate in transcription, RNA processing, and translation. RNP-machineries thus play vital roles in gene expression and regulation. Recent advances in cryo-EM techniques provided a wealth of near-atomic-level resolution structures setting the basis for understanding how these fascinating multiscale complexes exert their diverse roles. However, these structures represent only isolated snapshots of the plastic and highly dynamic RNP-machineries and are thus insufficient to comprehensively assess their multifaceted mechanisms. In this review, we discuss the role and merit of all-atom simulations in disentangling the mechanism of eukaryotic RNA-based machineries responsible for RNA processing. We showcase how all-atom simulations can capture their large-scale functional movements, trace the signaling pathways that are at the root of their massive conformational remodeling, explain recognition mechanisms of specific RNA sequences, and, lastly, unravel the chemical mechanisms underlying the formation of functional RNA strands. Finally, we review the methodological pitfalls and outline future challenges in modeling key functional aspects of these large molecular engines with all-atom simulations. In addition to providing insights into the most basic processes that govern all forms of life, in-depth mechanistic comprehension of RNP-machineries offers a foundation for developing innovative therapeutic strategies against the variety of human diseases linked to deregulated RNA metabolism. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics.
DOI
10.1002/wcms.1643
WOS
WOS:000870752000001
Archivio
https://hdl.handle.net/20.500.11767/130011
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85140250325
Diritti
metadata only access
Soggetti
  • cryo-EM

  • molecular dynamics

  • ribonucleoproteins

  • RNA catalysis

  • RNA processing

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback