Logo del repository
  1. Home
 
Opzioni

Energy Efficiency Enhancement of Ethanol Electrooxidation on Pd–CeO2/C in Passive and Active Polymer Electrolyte-Membrane Fuel Cells

Bambagioni V.
•
Bianchini C.
•
CHEN, YAN XIN
altro
Vizza F.
2012
  • journal article

Periodico
CHEMSUSCHEM
Abstract
Pd nanoparticles have been generated by performing an electroless procedure on a mixed ceria (CeO2)/carbon black (Vulcan XC-72) support. The resulting material, Pd–CeO2/C, has been characterized by means of transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP–AES), and X-ray diffraction (XRD) techniques. Electrodes coated with Pd–CeO2/C have been scrutinized for the oxidation of ethanol in alkaline media in half cells as well as in passive and active direct ethanol fuel cells (DEFCs). Membrane electrode assemblies have been fabricated using Pd–CeO2/C anodes, proprietary Fe[BOND]Co cathodes, and Tokuyama anion-exchange membranes. The monoplanar passive and active DEFCs have been fed with aqueous solutions of 10 wt % ethanol and 2 M KOH, supplying power densities as high as 66 mW cm−2 at 25 °C and 140 mW cm−2 at 80 °C. A comparison with a standard anode electrocatalyst containing Pd nanoparticles (Pd/C) has shown that, at even metal loading and experimental conditions, the energy released by the cells with the Pd–CeO2/C electrocatalyst is twice as much as that supplied by the cells with the Pd/C electrocatalyst. A cyclic voltammetry study has shown that the co-support ceria contributes to the remarkable decrease of the onset oxidation potential of ethanol. It is proposed that ceria promotes the formation at low potentials of species adsorbed on Pd, PdI-OHads, that are responsible for ethanol oxidation.
DOI
10.1002/cssc.201100738
WOS
WOS:000305935200018
Archivio
http://hdl.handle.net/11368/2560246
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84863663237
Diritti
metadata only access
Soggetti
  • electrooxidation

  • cerium

  • ethanol

  • fuel cell

  • palladium

Scopus© citazioni
79
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
92
Data di acquisizione
Mar 28, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback