Logo del repository
  1. Home
 
Opzioni

A GCV based Arnoldi-Tikhonov regularization method

NOVATI, PAOLO
•
Russo, Maria Rosaria
2014
  • journal article

Periodico
BIT
Abstract
For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each iteration. We study the convergence behavior of the Arnoldi method and its properties for the approximation of the (generalized) singular values, under the hypothesis that Picard condition is satisfied. Numerical experiments on classical test problems and on image restoration are presented.
DOI
10.1007/s10543-013-0447-z
WOS
WOS:000338229200011
Archivio
http://hdl.handle.net/11368/2835843
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84902789740
http://link.springer.com/article/10.1007%2Fs10543-013-0447-z/fulltext.html
Diritti
metadata only access
Soggetti
  • Linear discrete ill-p...

Scopus© citazioni
25
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
23
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback