Logo del repository
  1. Home
 
Opzioni

The Atiyah Patodi Singer Signature formula for measured foliations

ANTONINI, Paolo
2014
  • journal article

Periodico
JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK
Abstract
Given a compact manifold with boundary $X_0$ endowed with a foliation $\mathcal{F}_0$ transverse to the boundary, and which admits a holonomy invariant transverse measure $\Lambda$, %Let $(X,\mathcal{F})$ be the corresponding manifold with % cylindrical ends and extended foliation with equivalence relation $\mathcal{R}$. In the paper \cite{io} we proved a formula for the $L^2$-$\Lambda$ index of a % longitudinal % Dirac-type operator $D^{\mathcal{F}}$ on $X$ in the spirit of Alain Connes' non commutative geometry \cite{Cos}. %Here $\Lambda$ is a holonomy invariant transverse measure, %$\eta_{\Lambda}(D^{\mathcal{F}_{\partial}}$ is the measured eta invariant of the boundary operator defined by Ramachandran \cite{???}, %and the $\Lambda$--dimension $h^{\pm}_{\Lambda}$ of the space of extended solution is defined using square integrable representations of the equivalence relation with values in the weighted $L^2$ spaces of the leaves. we define three types of signature for the pair (foliation, boundary foliation): the analytic signature, denoted $\sigma_{\Lambda,\operatorname{an}}(X_0,\partial X_0)$, is the leafwise $L^2$-$\Lambda$-index of the signature operator on the extended manifold $X$ obtained attaching cylindrical ends to the boundary; the Hodge signature \noindent $\sigma_{\Lambda,\operatorname{Hodge}}(X_0,\partial X_0)$ is defined using the natural representation of the Borel groupoid $\mathcal{R}$ of $X$ on the field of square integrable harmonic forms on the leaves; and the de Rham signature, $\sigma_{\Lambda,\operatorname{dR}}(X_0,\partial X_0)$, defined using the natural representation of the Borel groupoid $\mathcal{R}_0$ of $X_0$ on the field of the $L^2$ relative de Rham spaces of the leaves. We prove that these three signatures coincide $$\sigma_{\Lambda, \operatorname{an}}(X_0,\partial X_0)= \sigma_{\Lambda,\operatorname{Hodge}}(X_0,\partial X_0)=\sigma_{\Lambda,\operatorname{dR}}(X_0,\partial X_0).$$ As a consequence of the index formula we proved in \cite{io}, we finally obtain the main result of this work, the Atiyah-Patodi-Singer signature formula for measured foliations: $$\sigma_{\Lambda,\operatorname{dR}}(X_0,\partial X_0)=\langle L(T\mathcal{F}_0),C_{\Lambda}\rangle +1/2[\eta_{\Lambda}(D^{\mathcal{F}_{\partial}})].$$ We give also, in the appendix, an account of noncommutative integration theory.
DOI
10.1515/crelle-2012-0117
WOS
WOS:000343153800007
Archivio
http://hdl.handle.net/20.500.11767/32944
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85033412490
https://arxiv.org/abs/0907.0800
Diritti
metadata only access
Scopus© citazioni
2
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
5
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback