Logo del repository
  1. Home
 
Opzioni

Solution of a BVP constrained in an infinitely deep potential well

Coti Zelati, Vittorio
1986
  • Controlled Vocabulary...

Abstract
Si dimostra l'esistenza di una soluzione per il problema al contorno \[ -\ddot{x}=\nabla U(x),x(0)=x(a)=0 \] dove x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$, U convessa e U(x)$\rightarrow+\infty$quando x$\rightarrow\text{\ensuremath{\partial}}\Omega$. Il metodo usato sì basa sul Principio di Azione Duale di Clarke e Ekeland. We prove existence of a solution for the boundary value problem \[ -\ddot{x}=\nabla U(x),x(0)=x(a)=0 \] where x:$\left[0,a\right]\mathbf{R^{\textrm{n}},}U:\Omega\subset\mathbf{R^{\textrm{n}}\rightarrow\mathbf{R}}$, U convex and U(x)$\rightarrow+\infty$ as x$\rightarrow\text{\ensuremath{\partial}}\Omega$. The method employed is based on the use ot the Dual Action Principle of Clarke and Ekeland.
Archivio
http://hdl.handle.net/10077/4985
Diritti
open access
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback