Logo del repository
  1. Home
 
Opzioni

Control in the spaces of ensembles of points

Agrachev, A
•
Sarychev, A.
2020
  • journal article

Periodico
SIAM JOURNAL ON CONTROL AND OPTIMIZATION
Abstract
We study the controlled dynamics of the ensembles of points of a Riemannian manifold $M$. Parameterized ensemble of points of $M$ is the image of a continuous map $gamma:Theta o M$, where $Theta$ is a compact set of parameters. The dynamics of ensembles is defined by the action $gamma( heta) mapsto P_t(gamma( heta))$ of the semigroup of diffeomorphisms $P_t:M o M, t in mathbb{R}$, generated by the controlled equation $dot{x}=f(x,u(t))$ on $M$. Therefore, any control system on $M$ defines a control system on (generally infinite-dimensional) space $mathcal{E}_Theta(M)$ of the ensembles of points. We wish to establish criteria of controllability for such control systems. As in our previous work [A. Agrachev, Y. Baryshnikov, and A. Sarychev, ESAIM Control Optim. Calc. Var., 22 (2016), pp. 921--938], we seek to adapt the Lie-algebraic approach of geometric control theory to the infinite-dimensional setting. We study the case of finite ensembles and prove the genericity of the exact controllability property for them. We also find a sufficient approximate controllability criterion for continual ensembles and prove a result on motion planning in the space of flows on $M$. We discuss the relation of the obtained controllability criteria to various versions of the Rashevsky--Chow theorem for finite- and infinite-dimensional manifolds.
DOI
10.1137/19M1273049
WOS
WOS:000546880000012
Archivio
http://hdl.handle.net/20.500.11767/108833
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85091333595
https://epubs.siam.org/doi/abs/10.1137/19M1273049
http://arxiv.org/abs/1907.00905v2
Diritti
open access
Soggetti
  • Mathematics - Optimiz...

  • Mathematics - Optimiz...

  • Mathematics - Classic...

  • 93B05, 93C25, 58E25

Scopus© citazioni
3
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
13
Data di acquisizione
Mar 22, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback