Logo del repository
  1. Home
 
Opzioni

A deep learning integrated Lee-Carter model

Andrea Nigri
•
Susanna Levantesi
•
Mario Marino
altro
Francesca Perla
2019
  • journal article

Periodico
RISKS
Abstract
In the field of mortality, the Lee–Carter based approach can be considered the milestone to forecast mortality rates among stochastic models. We could define a “Lee–Carter model family” that embraces all developments of this model, including its first formulation (1992) that remains the benchmark for comparing the performance of future models. In the Lee–Carter model, the kt parameter, describing the mortality trend over time, plays an important role about the future mortality behavior. The traditional ARIMA process usually used to model kt shows evident limitations to describe the future mortality shape. Concerning forecasting phase, academics should approach a more plausible way in order to think a nonlinear shape of the projected mortality rates. Therefore, we propose an alternative approach the ARIMA processes based on a deep learning technique. More precisely, in order to catch the pattern of kt series over time more accurately, we apply a Recurrent Neural Network with a Long Short-Term Memory architecture and integrate the Lee–Carter model to improve its predictive capacity. The proposed approach provides significant performance in terms of predictive accuracy and also allow for avoiding the time-chunks’ a priori selection. Indeed, it is a common practice among academics to delete the time in which the noise is overflowing or the data quality is insufficient. The strength of the Long Short-Term Memory network lies in its ability to treat this noise and adequately reproduce it into the forecasted trend, due to its own architecture enabling to take into account significant long-term patterns.
DOI
10.3390/risks7010033
WOS
WOS:000464132200001
Archivio
https://hdl.handle.net/11368/3035822
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85064807087
https://www.mdpi.com/2227-9091/7/1/33
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3035822/1/Nigri_deep-learning_2019.pdf
Soggetti
  • mortality

  • deep learning

  • long short-term memor...

  • Lee–Carter model

  • forecasting

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback