Logo del repository
  1. Home
 
Opzioni

Intraventricular flow patterns during right ventricular apical pacing

Bianco F.
•
Cicchitti V.
•
Bucciarelli V.
altro
Gallina S.
2019
  • journal article

Periodico
OPEN HEART
Abstract
Objectives To assess differences in blood flow momentum (BFM) and kinetic energy (KE) dissipation in a model of cardiac dyssynchrony induced by electrical right ventricular apical (RVA) stimulation compared with spontaneous sinus rhythm. Methods We cross-sectionally enrolled 12 consecutive patients (mean age 74±8 years, 60% male, mean left ventricular ejection fraction 58%±6 %), within 48 hours from pacemaker (PMK) implantation. Inclusion criteria were: age>18 years, no PMK-dependency, sinus rhythm with a spontaneous narrow QRS at the ECG, preserved ejection fraction (>50%) and a low percentage of PMKstimulation (<20%). All the participants underwent a complete echocardiographic evaluation, including left ventricular strain analysis and particle image velocimetry. Results Compared with sinus rhythm, BFM shifted from 27±3.3 to 34±7.6° (p=0.016), while RVA-pacing was characterised by a 35% of increment in KE dissipation, during diastole (p=0.043) and 32% during systole (p=0.016). In the same conditions, left ventricle global longitudinal strain (LV GLS) significantly decreased from 17±3.3 to 11%±2.8% (p=0.004) during RVA-stimulation. At the multivariable analysis, BFM and diastolic KE dissipation were significantly associated with LV GLS deterioration (Beta Coeff.=0.54, 95% CI 0.07 to 1.00, p=0.034 and Beta Coeff.=0.29, 95% CI 0.02 to 0.57, p=0.049, respectively). Conclusions In RVA-stimulation, BFM impairment and KE dissipation were found to be significantly associated with LV GLS deterioration, when controlling for potential confounders. Such changes may favour the onset of cardiac remodelling and sustain heart failure.
DOI
10.1136/openhrt-2019-001057
WOS
WOS:000471922200084
Archivio
http://hdl.handle.net/11368/2945993
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85065720861
https://openheart.bmj.com/content/6/1/e001057
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc/4.0/
FVG url
https://arts.units.it/bitstream/11368/2945993/1/2019openhrt.pdf
Soggetti
  • blood flow momentum

  • cardiac dyssynchrony

  • heart failure

  • intraventricular flow...

  • right ventricular pac...

Web of Science© citazioni
3
Data di acquisizione
Mar 26, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback