Logo del repository
  1. Home
 
Opzioni

Euclid preparation. XXXI. The effect of the variations in photometric passbands on photometric-redshift accuracy

Paltani, S.
•
Coupon, J.
•
Hartley, W. G.
altro
Weaver, J. R.
2024
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
The technique of photometric redshifts has become essential for the exploitation of multi-band extragalactic surveys. While the requirements on photometric redshifts for the study of galaxy evolution mostly pertain to the precision and to the fraction of outliers, the most stringent requirement in their use in cosmology is on the accuracy, with a level of bias at the sub-percent level for the Euclid cosmology mission. A separate, and challenging, calibration process is needed to control the bias at this level of accuracy. The bias in photometric redshifts has several distinct origins that may not always be easily overcome. We identify here one source of bias linked to the spatial or time variability of the passbands used to determine the photometric colours of galaxies. We first quantified the effect as observed on several well-known photometric cameras, and found in particular that, due to the properties of optical filters, the redshifts of off-axis sources are usually overestimated. We show using simple simulations that the detailed and complex changes in the shape can be mostly ignored and that it is sufficient to know the mean wavelength of the passbands of each photometric observation to correct almost exactly for this bias; the key point is that this mean wavelength is independent of the spectral energy distribution of the source. We use this property to propose a correction that can be computationally efficiently implemented in some photometric-redshift algorithms, in particular template-fitting. We verified that our algorithm, implemented in the new photometric-redshift code Phosphoros, can effectively reduce the bias in photometric redshifts on real data using the CFHTLS T007 survey, with an average measured bias Δz over the redshift range 0.4 ≤ z ≤ 0.7 decreasing by about 0.02, specifically from Δz ≃ 0.04 to Δz ≃ 0.02 around z = 0.5. Our algorithm is also able to produce corrected photometry for other applications.
DOI
10.1051/0004-6361/202346993
WOS
WOS:001157210300001
Archivio
https://hdl.handle.net/11368/3075081
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85182892572
https://www.aanda.org/articles/aa/full_html/2024/01/aa46993-23/aa46993-23.html
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3075081/1/aa46993-23.pdf
Soggetti
  • galaxies: distances a...

  • cosmology: observatio...

  • survey

  • techniques: photometr...

  • techniques: miscellan...

  • Astrophysics - Cosmol...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback