Logo del repository
  1. Home
 
Opzioni

A Machine-Learning Approach for the Reconstruction of Ground-Shaking Fields in Real Time

Fornasari, Simone Francesco
•
Pazzi, Veronica
•
Costa, Giovanni
2022
  • journal article

Periodico
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
Abstract
Real-time seismic monitoring is of primary importance for rapid and targeted emergency operations after potentially destructive earthquakes. A key aspect in determining the impact of an earthquake is the reconstruction of the ground-shaking field, usually expressed as the ground-motion parameter. Traditional algorithms compute the ground-shaking field from the punctual data at the stations relying on ground-motion prediction equations computed on estimates of the earthquake location and magnitude when the instrumental data are missing. The results of such algorithms are then subordinate to the evaluation of location and magnitude, which can take several minutes. To fill the temporal gap between the arrival of the data and the estimate of these parameters, a new data-driven algorithm that exploits the information from the station data only is introduced. This algorithm, consisting of an ensemble of convolutional neural networks (CNNs) trained on a database of ground-shaking maps produced with traditional algorithms, can provide estimates of the ground-shaking maps and their associated uncertainties in real time. Because CNNs cannot handle sparse data, a Voronoi tessellation of a selected peak ground parameter recorded at the stations is computed and used as the input to the CNNs; site effects and network geometry are accounted for using a (normalized) V S30 map and a station location map, respectively. The developed method is robust to noise, can handle network geometry changes over time without the need for retraining, and can resolve multiple simultaneous events. Although having a lower resolution, the results obtained are statistically compatible with the ones from traditional methods. A fully operational version of the algorithm is running on the servers at the Department of Mathematics and Geosciences of the University of Trieste, showing real-time capabilities in handling stations from multiple Italian strong-motion networks and outputting results with a resolution of 0.05° × 0.05°
DOI
10.1785/0120220034
WOS
WOS:000868855700001
Archivio
https://hdl.handle.net/11368/3072098
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85137140618
https://pubs.geoscienceworld.org/ssa/bssa/article/112/5/2642/615496/A-Machine-Learning-Approach-for-the-Reconstruction
Diritti
open access
license:copyright editore
license:digital rights management non definito
license uri:iris.pri02
license uri:iris.pri00
FVG url
https://arts.units.it/request-item?handle=11368/3072098
Soggetti
  • Real-time seismic mon...

  • civil protection

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback