Logo del repository
  1. Home
 
Opzioni

Plastome data reveal multiple geographic origins of Quercus Group Ilex

Simeone, Marco Cosimo
•
Grimm, Guido W.
•
Papini, Alessio
altro
Denk, Thomas
2016
  • journal article

Periodico
PEERJ
Abstract
Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnHpsbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.
DOI
10.7717/peerj.1897
WOS
WOS:000374748500001
Archivio
http://hdl.handle.net/11368/2872339
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84966263724
https://peerj.com/articles/1897/
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/3.0/it/
FVG url
https://arts.units.it/bitstream/11368/2872339/1/Simeone et al_2016_PeerJ.pdf
Soggetti
  • Fagaceae, Mediterrane...

Scopus© citazioni
55
Data di acquisizione
Jun 15, 2022
Vedi dettagli
Web of Science© citazioni
65
Data di acquisizione
Mar 27, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback