Logo del repository
  1. Home
 
Opzioni

Nonlocal and nonvariational extensions of killing-type equations

Gorni, Gianluca
•
Zampieri, Gaetano
2018
  • journal article

Periodico
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S
Abstract
The Killing-like equation and the inverse Noether theorem arise in connection with the search for first integrals of Lagrangian systems. We generalize the theory to include ``nonlocal'' constants of motion of the form $N_0+int N_1,dt$, and also to nonvariational Lagrangian systems $rac{d}{dt}partial_{dot q}L-partial_qL=Q$. As examples we study nonlocal constants of motion for the Lane-Emden system, for the dissipative Maxwell-Bloch system and for the particle in a homogeneous potential.
DOI
10.3934/dcdss.2018042
WOS
WOS:000423043900011
SCOPUS
2-s2.0-85032957827
Archivio
http://hdl.handle.net/11390/1127676
Diritti
closed access
Soggetti
  • Constants of motion

  • Dissipative Maxwell-B...

  • Inverse Noether theor...

  • Killing-like equation...

  • Nonvariational Lagran...

  • Analysis

  • Discrete Mathematics ...

  • Applied Mathematics

Scopus© citazioni
8
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
6
Data di acquisizione
Mar 26, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback