Logo del repository
  1. Home
 
Opzioni

Partitioning and mixing behaviour of trace elements at the Isonzo/Soča River mouth (Gulf of Trieste, northern Adriatic Sea)

Elena Pavoni
•
Matteo Crosera
•
Elisa Petranich
altro
Stefano Covelli
2020
  • journal article

Periodico
MARINE CHEMISTRY
Abstract
Estuaries are unique water systems and represent a vital link between land and sea. River transported contaminants, among which trace elements are of major concern, are subjected to a variety of physical, chemical and biogeochemical processes in the estuarine mixing zone. The Isonzo/Soča River is the main source of freshwater into the Gulf of Trieste (northern Adriatic Sea) and is known as the primary source of Hg due to long-term cinnabar (HgS) extraction from the Idrija mining district (Slovenia). Mercury distribution, cycling and speciation have been intensively studied at the Isonzo/Soča River mouth. Still, little information is currently available regarding other trace elements (As, Co, Cu, Cs, Cr, Fe, Ni, Mn, Pb and Zn). Indeed, this research aims to evaluate trace element occurrence and partitioning behaviour among suspended particulate matter (> 0.45 μm), colloidal material (0.45 μm – 10 kDa) and the truly dissolved fraction (< 10 kDa) at the mouth of the Isonzo/Soča River. Generally, trace elements are mainly associated with suspended particulate matter, which represents their main effective vehicle to coastal environments. In addition, dilution effects between riverine and marine particles are responsible for the decrease in particulate trace element concentrations along the water column. Mercury was notably present in winter in the freshwater, as expected under conditions of high river discharge. As opposed to other trace elements, particulate Mn was found to be high in the marine water, particularly in summer when high water temperatures could promote oxidation and precipitation processes. The Isonzo/Soča River mouth is characterised by a strong salinity gradient and geochemical processes appear to affect trace element partitioning behaviour. In this context, Fe, Mn and Cu were found to be mainly associated with the suspended particles and displayed the highest concentration in the colloidal material. Conversely, the truly dissolved fraction prevailed for As and Cs, which are often present in ionic dissolved forms in natural water systems.
DOI
10.1016/j.marchem.2020.103800
WOS
WOS:000539447200005
Archivio
http://hdl.handle.net/11368/2962791
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85083401597
https://www.sciencedirect.com/science/article/pii/S0304420320300542?via=ihub
Diritti
open access
license:copyright editore
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/2962791
Soggetti
  • Trace elements, Estua...

Scopus© citazioni
11
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
17
Data di acquisizione
Mar 19, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback