Logo del repository
  1. Home
 
Opzioni

Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces

De Rosa, Luigi
•
Inversi, Marco
•
Stefani, Giorgio
2023
  • journal article

Periodico
JOURNAL OF DIFFERENTIAL EQUATIONS
Abstract
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incom-pressible Euler equations assuming that the symmetric part of the gradient belongs to Lac([0, +infinity); Lexp(Rd ; Rdxd)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray-Hopf weak solutions of the Navier-Stokes equations.(c) 2023 Elsevier Inc. All rights reserved.
DOI
10.1016/j.jde.2023.05.019
WOS
WOS:001010768700001
Archivio
https://hdl.handle.net/20.500.11767/140474
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85160269027
https://arxiv.org/abs/2204.12779
https://ricerca.unityfvg.it/handle/20.500.11767/140474
Diritti
closed access
Soggetti
  • Euler equations

  • Weak-strong uniquenes...

  • Inviscid limit

  • Orlicz spaces

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback