Home
Esportazione
Statistica
Opzioni
Visualizza tutti i metadati (visione tecnica)
A note on equi-integrability in dimension reduction problems
Braides A.
•
Zeppieri C. I.
2007
journal article
Periodico
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
Abstract
In the framework of the asymptotic analysis of thin structures, we prove that, up to an extraction, it is possible to decompose a sequence of 'scaled gradients' (∇αuε|1\ ε∇βuε) (where ∇ β is the gradient in the k-dimensional 'thin variable' x β) bounded in Lp(ΩRm×n)(1 < p < + ∞) as a sum of a sequence (∇αv ε|1\ε∇βvε) whose p-th power is equi-integrable on Ω and a 'rest' that converges to zero in measure. In particular, for k = 1 we recover a well-known result for thin films by Bocea and Fonseca (ESAIM: COCV 7:443-470; 2002). © Springer-Verlag 2007.
DOI
10.1007/s00526-006-0065-6
WOS
WOS:000245169400005
Archivio
https://hdl.handle.net/20.500.11767/139534
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-33947670328
https://ricerca.unityfvg.it/handle/20.500.11767/139534
Diritti
metadata only access
Soggetti
Dimension reduction
Equi-integrability
Settore MAT/05 - Anal...
google-scholar
Vedi dettagli