Logo del repository
  1. Home
 
Opzioni

Neuron-Derived Extracellular Vesicles miRNA Profiles Identify Children Who Experience Adverse Events after Ketamine Administration for Procedural Sedation

Lucafò, Marianna
•
Bidoli, Carlotta
•
Franzin, Martina
altro
Cozzi, Giorgio
2025
  • journal article

Periodico
CLINICAL PHARMACOLOGY & THERAPEUTICS
Abstract
Ketamine provides the highest safety profile among sedatives for procedural sedation and analgesia in the pediatric emergency setting. However, it can cause vomiting and recovery agitation. No studies have examined epigenetic factors, such as microRNAs, for predicting the occurrence of these adverse events. Neuronal-derived extracellular vesicle microRNA profiles were studied to predict the occurrence of ketamine-induced vomiting and recovery agitation in children. For this aim, a single-center prospective pharmacoepigenetic study was performed and 50 children who underwent procedural sedation with intravenous ketamine as the only sedative drug were enrolled between October 2019 and November 2022. MiRNA profiling in plasma neural-derived extracellular vesicles was analyzed through next-generation sequencing and measured before treatment with ketamine. Twenty-two patients experienced vomiting or recovery agitation. Among the 16 differentially expressed microRNAs, the upregulated miR-15a-5p and miR-484 targeted genes related to N-methyl-D-aspartate (NMDA) receptor activity, including glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A). Preliminary data confirmed lower GRIN2A levels in patients who developed these events. Downregulated miR-126-3p and miR-24-3p targeted AMPA receptor-associated genes. Functional analyses of gene targets revealed the enrichment of glutamatergic and neurotrophins signaling. Recovery agitation was associated with this network. Vomiting was related to dopaminergic and cholinergic systems. Three miRNAs (miR-18a-3p, miR-484, and miR-548az-5p) were identified as predictive biomarkers (AUC 0.814; 95% CI: 0.632-0.956) for ketamine-induced vomiting and recovery agitation. MicroRNA profiles can predict the development of ketamine-induced vomiting or recovery agitation in children. This study contributes to the understanding of the mechanisms underlying ketamine-induced adverse events.
DOI
10.1002/cpt.3420
WOS
WOS:001294814800001
Archivio
https://hdl.handle.net/11368/3085538
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85201831976
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.3420
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc/4.0/
FVG url
https://arts.units.it/bitstream/11368/3085538/3/Clin Pharma and Therapeutics - 2024 - Lucafò - Neuronâ Derived Extracellular Vesicles miRNA Profiles Identify Children Who.pdf
Soggetti
  • ketamine

  • Neuronal-derived extr...

  • vomiting

  • recovery agitation

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback