Logo del repository
  1. Home
 
Opzioni

Influence of Temperature and Polymer Concentration on the Nonlinear Response of Highly Acetylated Chitosan–Genipin Hydrogels

Mio, Lorenzo
•
Sacco, Pasquale
•
Donati, Ivan
2022
  • journal article

Periodico
GELS
Abstract
Strain hardening, i.e., the nonlinear elastic response of materials under load, is a physiological response of biological tissues to mechanical stimulation. It has recently been shown to play a central role in regulating cell fate. In this paper, we investigate the effect of temperature and polymer concentrations on the strain hardening of covalent hydrogels composed of pH-neutral soluble chitosans crosslinked with genipin. A series of highly acetylated chitosans with a fraction of acetylated units, FA, in the range of 0.4–0.6 was synthesized by the homogeneous re-N-acetylation of a partially acetylated chitosan or the heterogeneous deacetylation of chitin. A chitosan sample with an FA = 0.44 was used to prepare hydrogels with genipin as a crosslinker at a neutral pH. Time and frequency sweep experiments were then performed to obtain information on the gelling kinetics and mechanical response of the resulting hydrogels under small amplitude oscillatory shear. While the shear modulus depends on the chitosan concentration and is almost independent of the gel temperature, we show that the extent of hardening can be modulated when the gelling temperature is varied and is almost independent of the experimental conditions used to build the hydrogels (ex situ or in situ gelation). The overall effect is attributed to a subtle balance between the physical (weak) entanglements and covalent (strong) crosslinks that determine the mechanical response of highly acetylated chitosan hydrogels at large deformations.
DOI
10.3390/gels8030194
WOS
WOS:000775344700001
Archivio
http://hdl.handle.net/11368/3014769
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85127594850
https://www.mdpi.com/2310-2861/8/3/194
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3014769/2/gels-08-00194.pdf
Soggetti
  • hydrogel

  • chitosan

  • genipin

  • strain hardening

  • neutral pH

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback