Logo del repository
  1. Home
 
Opzioni

Generating uniform random vectors in (Z_p)^k: the general case

ASCI, CLAUDIO
2009
  • journal article

Periodico
JOURNAL OF THEORETICAL PROBABILITY
Abstract
We consider the rate of convergence of the Markov chain Xn+1 = AXn + Bn (modp), where A is an integer matrix with nonzero eigenvalues, and {Bn}n is a sequence of independent and identically distributed integer vectors, with support not parallel to a proper subspace of Qk invariant under A. If |λi | =1 for all eigenvalues λi of A, then n = O((ln p)2) steps are sufficient and n = O(ln p) steps are necessary to have Xn sampling from a nearly uniform distribution. Conversely, if A has the eigenvalues λi that are roots of positive integer numbers, |λ1| = 1 and |λi | > 1 for all i = 1, then O(p2) steps are necessary and sufficient.
DOI
10.1007/s10959-008-0172-8
WOS
WOS:000268192300012
Archivio
http://hdl.handle.net/11368/2278178
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-67349183448
Diritti
metadata only access
Soggetti
  • Finite state Markov c...

  • Fourier transform

  • Generating random vec...

  • Rate of convergence

Web of Science© citazioni
5
Data di acquisizione
Mar 12, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback