Logo del repository
  1. Home
 
Opzioni

Quantitative analysis of finite-difference approximations of free-discontinuity problems

Bach, Annika
•
Braides, Andrea
•
Zeppieri, Caterina Ida
2020
  • journal article

Periodico
INTERFACES AND FREE BOUNDARIES
Abstract
Motivated by applications to image reconstruction, in this paper we analyse a finite-difference discretisation of the Ambrosio-Tortorelli functional. Denoted by epsilon the elliptic-approximation parameter and by delta the discretisation step-size, we fully describe the relative impact of epsilon and delta in terms of Gamma-limits for the corresponding discrete functionals, in the three possible scaling regimes. We show, in particular, that when epsilon and delta are of the same order, the underlying lattice structure affects the Gamma-limit which turns out to be an anisotropic free-discontinuity functional.
DOI
10.4171/ifb/443
WOS
WOS:000565018200003
Archivio
https://hdl.handle.net/20.500.11767/138219
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85092779181
https://arxiv.org/abs/1807.05346
Diritti
open access
Soggetti
  • Finite-difference dis...

  • Ambrosio-Tortorelli f...

  • Gamma-convergence

  • elliptic approximatio...

  • free-discontinuity

  • Settore MAT/05 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback