Logo del repository
  1. Home
 
Opzioni

Ionised AGN outflows in the Goldfish galaxy: The illuminating and interacting red quasar eFEDSJ091157.4+014327 at z ∼ 0.6

Musiimenta, B.
•
Speranza, G.
•
Urrutia, T.
altro
Rodriguez, I. M.
2024
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
Context. Evolutionary models suggest that the initial growth phases of active galactic nuclei (AGN) and their central supermassive black holes (SMBHs) are dust-enshrouded and characterised by jet or wind outflows that should gradually clear the interstellar medium (ISM) in the host by heating and/or expelling the surrounding gas. eFEDSJ091157.4+014327 (z ∼ 0.6) was selected from X-ray samples of eROSITA (extended ROentgen Survey with an Imaging Telescope Array) for its characteristics: red colours, X-ray obscuration (NH = 2.7 × 1022 cm−2) and luminous (LX = 6.5 × 1044 erg s−1), similar to those expected in quasars with outflows. It hosts an ionised outflow as revealed by a broad [O III]λ5007 Å emission line in the SDSS integrated spectrum. For a proper characterisation of the outflow properties and their effects, we need spatially resolved information. Aims: We aim to explore the environment around the red quasar, morphology of the [O III] gas and characterise the kinematics, mass outflow rates and energetics within the system. Methods: We used spatially resolved spectroscopic data from Multi Unit Spectroscopic Explorer (MUSE) with an average seeing of 0.6′′ to construct flux, velocity and velocity dispersion maps. Thanks to the spatially resolved [O III]λ5007 Å emission detected, we provide insights into the morphology and kinematics of the ionised gas and better estimates of the outflow properties. Results: We find that the quasar is embedded in an interacting and merging system with three other galaxies ∼50 kpc from its nucleus. Spatially resolved kinematics reveal that the quasar has extended ionised outflows of up to 9.2−0.4+1.2 kpc with positive and negative velocities up to 1000 km s−1 and −1200 km s−1, respectively. The velocity dispersion (W80) ranges from 600-1800 km s−1. We associate the presence of high-velocity components with the outflow. The total mass outflow rate is estimated to be ∼10 M⊙ yr−1, a factor of ∼3-7 higher than the previous findings for the same target and kinetic power of 2 × 1042 erg s−1. Considering different AGN bolometric luminosities, the kinetic coupling efficiencies range from 0.01%-0.03% and the momentum boosts are ∼0.2. Conclusions: The kinetic coupling efficiency values are low, which indicates that the ionised outflow is not energetically relevant. These values don't align with the theoretical predictions of both radiation-pressure-driven outflows and energy-conserving mechanisms. However, note that our results are based only on the ionised phase while theoretical predictions are multi-phase. Moreover, the mass loading factor of ∼5 is an indication that these outflows are more likely AGN-driven than star formation-driven.
DOI
10.1051/0004-6361/202449283
WOS
WOS:001260939900011
Archivio
https://hdl.handle.net/20.500.11767/140690
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85197685851
https://arxiv.org/abs/2401.17299
https://ricerca.unityfvg.it/handle/20.500.11767/140690
Diritti
open access
Soggetti
  • ISM: kinematics and d...

  • Settore FIS/05 - Astr...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback