Logo del repository
  1. Home
 
Opzioni

Gauge-measurable functions

Ponce, Augusto C.
•
Van Schaftingen, Jean
2017
  • Controlled Vocabulary...

Periodico
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics
Abstract
In 1973, E. J. McShane introduced an alternative definition of the Lebesgue integral based on Riemann sums, where gauges are used to decide what tagged partitions are allowed. Such an approach does not require any preliminary knowledge of Measure Theory. We investigate in this paper a definition of measurable functions also based on gauges. Its relation to the gauge-integrable functions that satisfy McShane’s definition is obtained using elementary tools from Real Analysis. We show in particular a dominated integration property of gauge-measurable functions.
DOI
10.13137/2464-8728/16208
Archivio
http://hdl.handle.net/10077/16208
Diritti
open access
Soggetti
  • gauge integral

  • Kurzweil-Henstock int...

  • Lebesgue integral

  • generalized Riemann i...

  • measurable function

  • gauge

Scopus© citazioni
0
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback