Logo del repository
  1. Home
 
Opzioni

Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms

SANTI, Simonetta
•
PINTON, Roberto
•
Locci G
altro
Varanini Z.
2003
  • journal article

Periodico
JOURNAL OF EXPERIMENTAL BOTANY
Abstract
An investigation was carried out to assess the effect of nitrate supply on the root plasma membrane (PM) H+-ATPase of etiolated maize (Zea mays L.) seedlings grown in hydroponics. The treatment induced higher uptake rates of the anion and the expression of a putative high-affinity nitrate transporter gene (ZmNRT2.1), the first to be identified in maize. Root PM H+-ATPase activity displayed a similar time-course pattern as that of net nitrate uptake and investigations were carried out to determine which of the two isoforms reported to date in maize, MHA1 and 2, responded to the treatment. MHA1 was not expressed under the conditions analysed. Genome analysis revealed that MHA2, described as the most abundant form in all maize tissues, was not present in the maize hybrid investigated, but a similar form was found instead and named MHA3. A second gene (named MHA4) was also identified and partially sequenced. Both genes, classified as members of the PM H+-ATPase subfamily II, responded to nitrate supply, although to different degrees: MHA4, in particular, proved more sensitive than MHA3, with a greater up- and down-regulation in response to the treatment. Increased expression of subfamily II genes resulted in higher steady-state levels of the enzyme in the root tissues and enhanced ATP-hydrolysing activity. The results support the idea that greater proton-pumping activity is required when nitrate inflow increases and suggest that nitrate may be the signal triggering the expression of the two members of PM H+-ATPase subfamily II.
DOI
10.1093/jxb/erg208
WOS
WOS:000184715000007
Archivio
http://hdl.handle.net/11390/713439
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0043207307
Diritti
metadata only access
Soggetti
  • nitrate transporter

Scopus© citazioni
84
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
83
Data di acquisizione
Mar 21, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback