Logo del repository
  1. Home
 
Opzioni

State spaces of orthomodular structures

Navara, Mirko
2000
  • Controlled Vocabulary...

Abstract
We present several known and one new description of orthomodular structures (orthomodular lattices, orthomodular posets and orthoalgebras). Originally, orthomodular structures were viewed as pasted families of Boolean algebras. Here we introduce semipasted families of Boolean algebras as an alternative description which is not as detailed, but substantially simplex. Semipasted families of Boolean algebras correspond to orthomodular structures in such a way that states and evaluation functionals are preserved. As semipasted families of Boolean algebras are quite general, they allow an easy construction of orthomodular structures with given state space properties. Based on this technique, we give a simplified proof of Shultz's Theorem on characterization of spaces of finitely additive states on orthomodular lattices. We also put some other results into the new context. We give a detailed exposition of the construction techniques as a tool for further applications, especially for finding counterexamples to questions about states on orthomodular structures.
Archivio
http://hdl.handle.net/10077/4310
Diritti
open access
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback