Logo del repository
  1. Home
 
Opzioni

Combining Amplicon Sequencing and Metabolomics in Cirrhotic Patients Highlights Distinctive Microbiota Features Involved in Bacterial Translocation, Systemic Inflammation and Hepatic Encephalopathy

Iebba, Valerio
•
Guerrieri, Francesca
•
Di Gregorio, Vincenza
altro
Merli, Manuela
2018
  • journal article

Periodico
SCIENTIFIC REPORTS
Abstract
In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation (BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria phylum, were shared between LC peripheral and portal blood and were functionally linked to iron metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour a 'functional dysbiosis' in the faeces and peripheral/portal blood, with specific keystone species and metabolites related to clinical markers of systemic inflammation and HE.
DOI
10.1038/s41598-018-26509-y
WOS
WOS:000433289600026
Archivio
http://hdl.handle.net/11368/2968607
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85048033360
https://www.nature.com/articles/s41598-018-26509-y
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2968607/1/Combining amplicon sequencing and metabolomics.pdf
Soggetti
  • Microbiota

  • metabolomic

  • bacterial translocati...

  • Liver cirrhosi

  • hepatic hencephalopat...

  • network

Web of Science© citazioni
54
Data di acquisizione
Mar 22, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback