Logo del repository
  1. Home
 
Opzioni

A Gauss-Newton iteration for Total Least Squares problems

Fasino, Dario
•
FAZZI, ANTONIO
2018
  • journal article

Periodico
BIT
Abstract
The Total Least Squares solution of an overdetermined, approximate linear equation Ax approx b minimizes a nonlinear function which characterizes the backward error. We devise a variant of the Gauss–Newton iteration with guaranteed convergence to that solution, under classical well-posedness hypotheses. At each iteration, the proposed method requires the solution of an ordinary least squares problem where the matrix A is modified by a rank-one term. In exact arithmetics, the method is equivalent to an inverse power iteration to compute the smallest singular value of the complete matrix (A | b). Geometric and computational properties of the method are analyzed in detail and illustrated by numerical examples.
DOI
10.1007/s10543-017-0678-5
WOS
WOS:000432718100002
Archivio
http://hdl.handle.net/11390/1134964
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85026477972
https://doi.org/10.1007/s10543-017-0678-5
Diritti
open access
Soggetti
  • Gauss-Newton method

  • Total Least Square

  • Computational Mathema...

  • Applied Mathematics

Scopus© citazioni
4
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
8
Data di acquisizione
Mar 28, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback